

 [image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/teibit/xarray-events][image: Build Status (Travis CI)]
 [https://travis-ci.com/teibit/xarray-events][image: License]
 [https://github.com/teibit/xarray-events/blob/master/LICENSE.txt]
xarray-events: An open-source extension of xarray that supports events handling

xarray-events is an open-source API based on xarray. It provides
sophisticated mechanisms to handle events easily.

Events data is something very natural to conceive, yet it’s rather infrequent to
see native support for it in common data analysis libraries. Our aim is to fill
this gap in a very general way, so that scientists from any domain can take
benefit from this. We’re building all of this on top of xarray because
this is already a well-established open-source library that provides exciting
new ways of handling multi-dimensional labelled data, with applications in a
wide range of domains of science.

This library makes it possible to extend a Dataset by introducing
events based on the data. Internally it works as an accessor to xarray
that provides new methods to deal with new data in the form of events and also
extends the existing ones already provided by it to add compatibility with this
new kind of data.

We hope that this project inspires you to rethink how you currently handle data
and, if needed, improve it.

Example

Assume we have a DataFrame (in a variable called ds) of events and a
Dataset (in a variable called events) of sports data in such a way that
the events are a meaningful complement to the data stored in the Dataset.

events = pd.DataFrame(
 {
 'event_type': ['pass', 'goal', 'pass', 'pass'],
 'start_frame': [1, 175, 251, 376],
 'end_frame': [174, 250, 375, 500]
 }
)

ds = xr.Dataset(
 data_vars={
 'ball_trajectory': (
 ['frame', 'cartesian_coords'],
 np.exp(np.linspace((-6, -8), (3, 2), 500))
)
 },
 coords={'frame': np.arange(1, 501), 'cartesian_coords': ['x', 'y']},
 attrs={'match_id': 12, 'resolution_fps': 25, '_events': events}
)

With this API we can do the following:

ds
.events.load(events, {'frame': ('start_frame', 'end_frame')})
.events.sel({
 'frame': range(175, 376),
 'start_frame': lambda frame: frame >= 175,
 'end_frame': lambda frame: frame < 376
})
.events.groupby_events('ball_trajectory')
.mean()

This will:

	Load the events DataFrame specifying that the columns start_frame and
end_frame define the span of the events as per the Dataset’s coordinate
frame.

	Perform a selection constraining the frames to be only in the range
[175, 375].

	Group the DataVariable ball_trajectory by the events.

	Compute the mean of each group.

<xarray.DataArray 'ball_trajectory' (event_index: 2, cartesian_coords: 2)>
array([[0.12144595, 0.02556095],
 [0.84426861, 0.22346441]])
Coordinates:
 * cartesian_coords (cartesian_coords) <U1 'x' 'y'
 * event_index (event_index) int64 1 2

This result can be interpreted as the mean 2D position of the ball over the span
of each event during the frames [175, 375]. This is a very powerful set of
operations performed via some simple and intuitive function calls. This is the
beauty of this API.

License

This API is licensed [https://github.com/teibit/xarray-events/blob/master/LICENSE.txt]
under Apache 2.0.

Getting Started

Using xarray-events is simple. Here’s how to get started.

	What are events?

	Installation

What are events?

In this section we shall provide a description of what events are.

xarray

This library is based on xarray. As such, we encourage you to first
become familiar with it before continuing with this guide. Their official
documentation [http://xarray.pydata.org/] does already a fantastic job at
explaining in detail every aspect of their approach on managing data.

Concept

Now that you’re familiar with xarray, let’s describe what we mean by
events.

The dictionary definition [https://www.merriam-webster.com/dictionary/event]
goes along the lines of the occurrence of something. Ours doesn’t deviate much
from this. Depending on the kind of data that the Dataset stores,
events can be seen as occurrences of systematic processes that share the same
characteristics of the data. Hence, we expect the attributes or dimensions of
an event to be shared to some extent with the dimensions of the data described
by the Dataset.

Installation

You can install xarray-events using Pypi [https://pypi.org/project/xarray-events/]:

pip install xarray-events

Tutorials

In this section we provide tutorials that cover the main functionality of this
API in multiple domains of science.

	Sports data
	Raw data

	Loading

	Selecting
	Constraints that match only the events
	Constraints that specify single values

	Constraints that specify collections

	Constraints that specify lambda functions

	Constraints that match only the Dataset

	Constraints that match everything

	Expanding an events column to match the Dataset’s shape

	Grouping a data variable by the events in the DataFrame

Sports data

In this tutorial we’ll be working with sports data.

	Raw data

	Loading

	Selecting
	Constraints that match only the events
	Constraints that specify single values

	Constraints that specify collections

	Constraints that specify lambda functions

	Constraints that match only the Dataset

	Constraints that match everything

	Expanding an events column to match the Dataset’s shape

	Grouping a data variable by the events in the DataFrame

Raw data

Dataset

We’re going to work with a Dataset that describes a football match
consisting of the following:

	The following two coordinates:

	The frame at which the ball is at. There are 250 possible frames in
this recording.

	The cartesian coordinates (x,y) of the ball’s position.

	A DataVariable that describes the trajectory of the ball. It is
described by the two coordinates of the Dataset.

	The following two attributes:

	The match ID, which is 12.

	The resolution (25 Hz) of the recording in frames per second.

We can create it manually like this:

ds = xr.Dataset(
 data_vars={
 'ball_trajectory': (
 ['frame', 'cartesian_coords'],
 np.exp(np.linspace((-6, -8), (3, 2), 2450))
)
 },
 coords={
 'frame': np.arange(1, 2451),
 'cartesian_coords': ['x', 'y'],
 'player_id': [2, 3, 7, 19, 20, 21, 22, 28, 34, 79]
 },
 attrs={'match_id': 12, 'resolution_fps': 25}
)

The object looks like this:

<xarray.Dataset>
Dimensions: (cartesian_coords: 2, frame: 2450)
Coordinates:
 * frame (frame) int64 1 2 3 4 5 6 ... 2446 2447 2448 2449 2450
 * cartesian_coords (cartesian_coords) <U1 'x' 'y'
Data variables:
 ball_trajectory (frame, cartesian_coords) float64 0.002479 ... 7.389
Attributes:
 match_id: 12
 resolution_fps: 25

Events

We’re going to create events directly in a DataFrame consisting of the
following attributes:

	The event type, which can be: penalty, pass or goal.

	The frame where the event starts.

	The frame where the event ends.

	The ID of the responsible player.

We can create it manually like this:

events = pd.DataFrame({
 'event_type':
 ['pass', 'goal', 'pass', 'pass', 'pass',
 'penalty', 'goal', 'pass', 'pass', 'penalty'],
 'start_frame': [1, 425, 600, 945, 1100, 1280, 1890, 2020, 2300, 2390],
 'end_frame': [424, 599, 944, 1099, 1279, 1889, 2019, 2299, 2389, 2450],
 'player_id': [79, 79, 19, 2, 3, 2, 3, 79, 2, 79]
})

The object is just a table that looks like this:

	(index)

	event_type

	start_frame

	end_frame

	player_id

	0

	pass

	1

	424

	79

	1

	goal

	425

	599

	79

	2

	pass

	600

	944

	19

	3

	pass

	945

	1099

	2

	4

	pass

	1100

	1279

	3

	5

	penalty

	1280

	1889

	2

	6

	goal

	1890

	2019

	3

	7

	pass

	2020

	2299

	79

	8

	pass

	2300

	2389

	2

	9

	penalty

	2390

	2450

	79

Loading

We can load the events DataFrame into our Dataset like this:

ds = ds.events.load(events)

At this point, ds contains the (private) attribute _events
storing events.

Selecting

We now move on to the most popular action in xarray: selection. Here is
where we start grasping the benefits of xarray-events. The method
provided by xarray is very powerful and useful when we need to perform
selections on a Dataset only. However, the extended
sel() in xarray-events allows you to
make selections that also take into account the existence of events data.

	Constraints that match only the events
	Constraints that specify single values

	Constraints that specify collections

	Constraints that specify lambda functions

	Constraints that match only the Dataset

	Constraints that match everything

Constraints that match only the events

The following sections show examples of how we can make selections in the events
DataFrame.

	Constraints that specify single values

	Constraints that specify collections

	Constraints that specify lambda functions

Constraints that specify single values

Say we want to select all passes. We can do it like this:

ds.events.sel({'event_type': 'pass'})

This returns a Dataset object. To actually see the filtered result, we
can do this:

ds
.events.sel({'event_type': 'pass'})
.events.df

And the resulting DataFrame looks like this:

	(index)

	event_type

	start_frame

	end_frame

	player_id

	0

	pass

	1

	424

	79

	2

	pass

	600

	944

	19

	3

	pass

	945

	1099

	2

	4

	pass

	1100

	1279

	3

	7

	pass

	2020

	2299

	79

	8

	pass

	2300

	2389

	2

See? We are now using the accessor twice, once every time we need to access any
of its methods. First we access the method
sel() and then the property
df(). This is because the result of
sel() is actually a (stateful)
Dataset, as mentioned before, so we use the accessor again on it in a
chain-like fashion. Very convenient!

Constraints that specify collections

Selecting in the events DataFrame by the values in any arbitrary
Collection is possible. The usefulness of this possibility becomes more
evident when there is a complex process behind obtaining such a collection. For
the sake of an example, let’s assume such a collection is already given.

Say we want to select all events where the player is in some specified list. We
can do it like this:

ds
.events.sel({'player_id': [2, 3]})
.events.df

And the resulting DataFrame looks like this:

	(index)

	event_type

	start_frame

	end_frame

	player_id

	3

	pass

	945

	1099

	2

	4

	pass

	1100

	1279

	3

	5

	penalty

	1280

	1889

	2

	6

	goal

	1890

	2019

	3

	8

	pass

	2300

	2389

	2

Constraints that specify lambda functions

Selecting ranges in the events DataFrame is possible. We provide support
for lambda functions in order to empower the user to specify arbitrary
conditions. In the example below we’re going to use a simple condition but,
evidently, it can be as complex as needed.

Say we want to select all events that occurred between frames 327 and 1327. We
can do it like this:

ds
.events.sel({
 'start_frame': lambda frame: frame > 327,
 'end_frame': lambda frame: frame < 1327
})
.events.df

And the resulting DataFrame looks like this:

	(index)

	event_type

	start_frame

	end_frame

	player_id

	0

	pass

	1

	424

	79

	1

	goal

	425

	599

	79

	2

	pass

	600

	944

	19

	3

	pass

	945

	1099

	2

	4

	pass

	1100

	1279

	3

Constraints that match only the Dataset

We may also perform a regular selection on the Dataset as we would
without this accessor. In that case, sel()
works just as it does on xarray. Although we support this functionality,
it’s simpler to just stick to the xarray method.

Note

We also support the regular method arguments of the sel() in
xarray.

Constraints that match everything

Let’s now see how we put together all of the functionality of our accessor to
make useful (though complex) queries.

Given that now sel() considers two
different search spaces (i.e. the events DataFrame and the
Dataset), we can make the search be so complex that it searches in both
spaces. This is a powerful feature of our accessor.

Say we may wish to perform a selection with the following specification:

	An event of type pass.

	The frames are within 1728 and 2378.

Moreover, we want the result to be consistent across the Dataset and the
events DataFrame. In that case, we can achieve this like this:

ds
.events.sel({
 'frame': range(1729, 2378),
 'start_frame': lambda frame: frame > 1728,
 'end_frame': lambda frame: frame < 2378,
 'event_type': 'pass'
})

Internally, sel() filters the events
DataFrame and also the Dataset, each with its corresponding
attributes.

The resulting Dataset looks like this:

<xarray.Dataset>
Dimensions: (cartesian_coords: 2, frame: 650, player_id: 10)
Coordinates:
 * frame (frame) int64 1728 1729 1730 1731 ... 2374 2375 2376 2377
 * cartesian_coords (cartesian_coords) <U1 'x' 'y'
 * player_id (player_id) int64 2 3 7 19 20 21 22 28 34 79
Data variables:
 ball_trajectory (frame, cartesian_coords) float64 1.414 0.3875 ... 5.484
Attributes:
 match_id: 12
 resolution_fps: 25
 _events: event_type start_frame end_frame player_id\n7 ...

And the resulting DataFrame looks like this:

	(index)

	event_type

	start_frame

	end_frame

	player_id

	7

	pass

	2020

	2299

	79

We want to emphasize how we give the user the power to do things exactly as they
want them since the constraints have to be properly specified for both the
Dataset and also the DataFrame.
sel() does not assume that they may want to
select both or anything like that. It all must be specified. This provides great
flexibility.

Expanding an events column to match the Dataset’s shape

In this section we’re going to demonstrate how to use
expand_to_match_ds(). Some observations
first:

	The events DataFrame doesn’t have a custom index name, so we’re going
to let fill_value_col be “event_index”.

	We’re going to fill the output DataArray with the index of each event
in a forward-fill way. It’s important that this column be unique, which is
the case this way.

	We’re going to use start_frame as the dimension_matching_col by
previously specifying that it maps to frame in the Dataset.
This mapping is consistent since the values of start_frame form a subset
of the values of Dataset.

By calling expand_to_match_ds() this way
we’ll be constructing a DataArray with the following properties:

	The coordinate is frame.

	At each position, there’s the (unique) index of each event repeated forward
until a new index needs to be placed. Therefore, each value represents the
event that is currently taking place at the frame determined by the
coordinate.

To do this, we first need to make sure to call
load() specifying the mapping and then call
expand_to_match_ds() with the values
already discussed:

ds
.events.load(events, {'start_frame': 'frame'})
.events.expand_to_match_ds('start_frame', 'event_index', 'ffill')

This will produce the following DataArray:

<xarray.DataArray 'event_index' (frame: 2450)>
array([0, 0, 0, ..., 9, 9, 9])
Coordinates:
* frame (frame) int64 1 2 3 4 5 6 7 ... 2444 2445 2446 2447 2448 2449 2450

Grouping a data variable by the events in the DataFrame

In this section we’re going to illustrate how to use the method
groupby_events().

Let’s start by recalling that our Dataset contains the data variable
ball_trajectory that has shows for each frame the cartesian coordinates
of the ball. Our goal in this tutorial is to find out where the majority of
these points lie for each group.

We can start by generating the groups. These groups will tell us which positions
in ball_trajectory correspond to the frames determined by each event.
Then we’ll compute the median of them. We can do that like this:

ds
.events.groupby_events('ball_trajectory', 'start_frame', 'ffill')
.median()

The resulting DataArray looks like this:

<xarray.DataArray 'ball_trajectory' (event_index: 10, cartesian_coords: 2)>
array([[5.39252098e-03, 7.95626970e-04],
 [1.62105883e-02, 2.70288906e-03],
 [4.21467117e-02, 7.81448485e-03],
 [1.05625415e-01, 2.16889707e-02],
 [1.95479999e-01, 4.29810185e-02],
 [8.34698826e-01, 2.15651098e-01],
 [3.25129820e+00, 9.76995999e-01],
 [6.90622435e+00, 2.25647449e+00],
 [1.36302613e+01, 4.80287169e+00],
 [1.79888284e+01, 6.53714824e+00]])
Coordinates:
 * cartesian_coords (cartesian_coords) <U1 'x' 'y'
 * event_index (event_index) int64 0 1 2 3 4 5 6 7 8 9

Development

Welcome to the developer section of xarray-events! Here you’ll find a
comprehensive technical reference of this API.

	API Reference
	load

	sel

	groupby_events

	Requirements

API Reference

The following are the main methods of EventsAccessor. The contents
of each section have been automatically generated from the docstrings. For more
details, refer to Tutorials.

Each section additionally includes the class definition as well as its
properties, so that each method definition is easy to follow.

	load

	sel

	groupby_events

load

sel

groupby_events

Requirements

This API is based on the following dependencies:

	python [https://www.python.org]

	xarray [http://xarray.pydata.org/]

	pandas [https://pandas.pydata.org]

Additionally, the tests also require the following dependencies:

	pytest [https://docs.pytest.org]

	numpy [https://numpy.org]

Note

the tests have been done using the latest version of each dependency.

Index

 [image: Code Coverage Status (Codecov)]
 [https://codecov.io/gh/teibit/xarray-events][image: Build Status (Travis CI)]
 [https://travis-ci.com/teibit/xarray-events][image: License]
 [https://github.com/teibit/xarray-events/blob/master/LICENSE.txt]
xarray-events: An open-source extension of xarray that supports events handling

xarray-events is an open-source API based on xarray. It provides
sophisticated mechanisms to handle events easily.

Events data is something very natural to conceive, yet it’s rather infrequent to
see native support for it in common data analysis libraries. Our aim is to fill
this gap in a very general way, so that scientists from any domain can take
benefit from this. We’re building all of this on top of xarray because
this is already a well-established open-source library that provides exciting
new ways of handling multi-dimensional labelled data, with applications in a
wide range of domains of science.

This library makes it possible to extend a Dataset by introducing
events based on the data. Internally it works as an accessor to xarray
that provides new methods to deal with new data in the form of events and also
extends the existing ones already provided by it to add compatibility with this
new kind of data.

We hope that this project inspires you to rethink how you currently handle data
and, if needed, improve it.

Example

Assume we have a DataFrame (in a variable called ds) of events and a
Dataset (in a variable called events) of sports data in such a way that
the events are a meaningful complement to the data stored in the Dataset.

events = pd.DataFrame(
 {
 'event_type': ['pass', 'goal', 'pass', 'pass'],
 'start_frame': [1, 175, 251, 376],
 'end_frame': [174, 250, 375, 500]
 }
)

ds = xr.Dataset(
 data_vars={
 'ball_trajectory': (
 ['frame', 'cartesian_coords'],
 np.exp(np.linspace((-6, -8), (3, 2), 500))
)
 },
 coords={'frame': np.arange(1, 501), 'cartesian_coords': ['x', 'y']},
 attrs={'match_id': 12, 'resolution_fps': 25, '_events': events}
)

With this API we can do the following:

ds
.events.load(events, {'frame': ('start_frame', 'end_frame')})
.events.sel({
 'frame': range(175, 376),
 'start_frame': lambda frame: frame >= 175,
 'end_frame': lambda frame: frame < 376
})
.events.groupby_events('ball_trajectory')
.mean()

This will:

	Load the events DataFrame specifying that the columns start_frame and
end_frame define the span of the events as per the Dataset’s coordinate
frame.

	Perform a selection constraining the frames to be only in the range
[175, 375].

	Group the DataVariable ball_trajectory by the events.

	Compute the mean of each group.

<xarray.DataArray 'ball_trajectory' (event_index: 2, cartesian_coords: 2)>
array([[0.12144595, 0.02556095],
 [0.84426861, 0.22346441]])
Coordinates:
 * cartesian_coords (cartesian_coords) <U1 'x' 'y'
 * event_index (event_index) int64 1 2

This result can be interpreted as the mean 2D position of the ball over the span
of each event during the frames [175, 375]. This is a very powerful set of
operations performed via some simple and intuitive function calls. This is the
beauty of this API.

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

nav.xhtml

 Table of Contents

 		
 xarray-events: An open-source extension of xarray that supports events handling

